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SUMMARY

The shape of a flying configuration is globally optimized if its camber, twist, thickness and the similarity
parameters of its planform are determined in order to obtain a minimum drag at cruising Mach number.
The optimum–optimorum (OO) theory of the author solves this problem by using a lower limit
hyper-surface for the drag functional. A multipoint design is realized by using movable leading edge
flaps. The iterative OO theory is used for the computation of the friction drag, for the determination of
the viscosity effect in the optimal shape of the flying configuration and to perform the multidisciplinary
design by including structure and thermal auxiliary conditions. A proposal of a fully-optimized shape of
supersonic transport aircraft with twin integrated fuselages is also made. Copyright © 1999 John Wiley
& Sons, Ltd.

KEY WORDS: aerodynamic optimal shape design; variational methods; supersonic flow; multipoint and multidisci-
plinary optimal design

1. THE OPTIMUM–OPTIMORUM THEORY AND THE INVISCID DESIGN

The inviscid optimal design uses an inviscid flow field as a starting solver for the optimization.
The determination of the optimum–optimorum (OO) shape of the flying configurations (FC)
leads to an extended variational problem with free-boundary for the inviscid drag functional:

Cd
(i)


&
S(x 1,x 2)

F [x1, x2, Z(x1, x2)] dx1 dx2=min. (1)

Here, the equations Z(x1, x2) of the FCs surface and of the contour S(x1, x2) of its planform
are a priori unknown and are determined by solving this extended variational problem.
According to the OO theory [1–6] the OO-FC is chosen among a set of admissible FC, which
are defined by some common properties. Two FC belong to the same set if: their downwashes
w and w* (of the thin and thick symmetrical components of the FC respectively) are piecewise
approximated through two superpositions of homogeneous polynoms of the same degree; their
planforms are polygons that are related through affine transformations and the shapes of the
FC fulfil the same auxiliary conditions. The free parameters of the optimization are the
coefficients w̃ij and w̃ ij* of the polynomial expansions of w and w* and the similarity parameters
ni of the FCs planforms. According to the authors numerical–analytical method [1–12], the
lower limit hypersurface of the drag functional is defined, i.e.
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Figure 1. Inviscid OO shapes of the delta wing alone, Adela (c); of the integrated delta wing–fuselage configuration,
Fadet (a); and of the integrated delta wing–fuselage–movable leading edge flaps configuration of variable geometry,

Varidela, with retracted (a) and open (b) flaps.

(Cd
(i))opt= f(ni). (2)

The location of the minimum of this hypersurface gives the best values of the similarity
parameters ni and the optimal corresponding FC is the OO-FC of the set. Well-suited
geometrical and aerodynamical auxiliary conditions and the authors reinforced potential
solutions, as in [1–12], are used as starting solutions for the optimal design of the inviscid OO
shapes of the following three FC: the delta wing alone, Adela (Figure 1(c); Figure 3)
(optimized at cruising Mach number M�=2, with 13 free parameters), as in [1–6], the
integrated delta wing–fuselage configuration, Fadet (Figure 1(a)), as in [6–8] (with 26 free
parameters) and the integrated delta wing–fuselage–movable leading edge flaps configuration
of variable geometry, Varidela (Figure 1(a) and (b)) (with 39 free parameters), optimized at
two different cruising Mach numbers M�* and M� as in [9–12]. This multipoint optimal
design is realized by using open (Figure 1(b)) and retracted flaps (Figure 1(a)). The practical
applications of these optimized shapes are: the unmanned FC for Adela, the optimal integrated
supersonic transport aircraft (OI-STA) and the space vehicles (SV) in two stages (like Sänger)
for Fadet and the one stage SV (like NASP) for Varidela. In Figure 2(b), a shape of an
OI-STA is proposed.

Figure 2. Proposed shape of an OI-STA (b) compared with that of Concorde (a).
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2. THE INVISCID DESIGN OF THE OPTIMUM–OPTIMORUM SHAPE OF THE
DELTA WING

The inviscid optimal design of the shape of the delta wing alone is further treated. Let us refer
the thick, lifting delta wing with the similarity parameter of the planform n=Bl (B=

M�

2 −1 and l=l1h1 with l1 the maximal half-span and h1 the maximal depth) to a
three-orthogonal system of co-ordinates Ox1x2x3, having the vertex O at the apex of the wing.
The Ox1-axis has the direction tangent to the skeleton surface at the apex of the wing, in the
symmetry plane Ox1x3 of the wing. The undisturbed velocity Vb � is contained in this plane.
This wing is flattened in the plane Ox1x2. The downwashes w̃ and w̃* are expressed in the
form of superpositions of homogeneous polynoms in x̃1 and x̃2, i.e.

w̃= %
N

m=1

x̃1
m−1 %

m−1

k=0

w̃m−k−1,k �ỹ �k, w̃*= %
N

m=1

x̃1
m−1 %

m−1

k=0

w̃m−k−1,k* �ỹ �k. (3a,b)

The axial disturbance velocities u and u* for the delta wing components with subsonic leading
edges are, as in [1–6], of the form:

u=l %
N

n=1

x̃1
n−1! %

E((n−1)/2)

q=1

C0 n,2qỹ
2q cosh−1 ' 1

ỹ2+ %
E(n/2)

q=0

A0 n,2qỹ2q


1− ỹ2

"
, (4)

u*=l %
N
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n2ỹ2

+ %
n−1

q=0

H0 nq* ỹq[cosh−1 M1+ (−1)q cosh−1 M2]+ %
E((n−2)/2)

q=0

D0 n,2q* ỹ2q 
1−n2ỹ2",

�
M1,2=

'(1+n)(1�nỹ)
2n(1� ỹ)

�
. (5)

Here is x̃1=x1/h1, x̃2=x2/l1, x̃3=x3/h1, w=w̃, w*=w̃*, u=lũ, u*=lũ*. The coefficients
A0 n,2q, C0 n,2q and H0 nq* , D0 n,2q* , C0 n,2q* of ũ and ũ* are related to the coefficients w̃ij, w̃ ij* of
w̃ and w̃* through linear and homogeneous relations, i.e.:

A0 n,2q= %
n−1

j=0

ã2q, j
(n) w̃n− j−1, j, H0 nq* = %

n−1

j=0

h0 *qj
(n)w̃n− j−1, j* , etc. (6a,b)

The coefficients ã2q, j
(n) , c̃2q, j

(n) , h0 *qj
(n), d0 *2q, j

(n) , c̃*2q, j
(n) are non-linear functions only of n. Let us first

perform the optimal inviscid design of the thin delta wing, as in [1–6]. The optimal values of
the coefficients w̃ij, for a given value of n, are obtained by setting the drag functional

Cd
l %
N

n=1

%
N

m=1

%
m−1

k=0

%
n−1

j=0

V0 nmkjw̃m−k−1,kw̃n− j−1, j=min, (7)

with the following auxiliary conditions: the lift coefficient Cl is given and the Kutta condition
on subsonic leading edge (i.e. uỹ�1=0) is fulfilled in order to suppress the induced drag at
cruising Mach number M�, i.e.

C0 l
 %
N

n=1

%
n−1

j=0

L0 njw̃n− j−1, j=
Cl0

l
, F0 n
 %

n−1

j=0

C0 njw̃n− j−1, j=0, (8a,b)

with n=0, 1, . . . , (N−1). The coefficients w̃ij and the Lagrange multipliers l (1) and ln, as in
[1–6], are given by solving of the following algebraic system formed by Equations (8a,b) and
the equations obtained by the cancellation of the coefficients of each variation dw̃us, i.e.:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 137–148 (1999)



A. NASTASE140

Figure 3. The OO-shape of the delta wing model Adela designed by the author with her own rapid software.

%
N

n=1

%
n−1

j=0

[V0 n,u+s+1,s, j+V0 u+s+1,n, j,s ]w̃n− j−1, j+l (1)L0 u+s+1,s+lu+s+1C0 u+s+1,s=0,

(9)

with 1Bu+s+1BN, u=0, 1, . . . , (N−1). Now, if the optimal design of the thick symmet-
rical delta wing is considered, the optimal values of the coefficients w̃ ij*, for a given n, are
obtained by setting the corresponding drag functional

Cd*
l %
N

n=1

%
N

m=1

%
m−1

k=0

%
n−1

j=0

V0 nmkj* w̃m−k−1,k* w̃n− j−1, j* =min, (10)

with the following auxiliary conditions: the relative volume (t0*=V0/S0
3/2) is given and the

thickness cancels along the leading edge, i.e.

t̃*
 %
N

m=1

%
m−1

k=0

t̃mk* w̃m−k−1,k* =t0*
l, E0 t*
 %
N

m= t+1

%
m−1

k=0

d0 *mk
(t)w̃m−k−1,k* =0, (11a,b)

with t=0, 1, . . . , (N−1). The coefficients w̃ ij* and the Lagrange multipliers m (1) and mt are
given by the solving of the following algebraic system, as in [1–6]:

%
N

n=1

%
n−1

j=0

[V0 n,u+s+1,s, j* +V0 u+s+1,n, j,s* ]w̃n− j−1, j* +m (1)t̃ u+s+1,s* + %
N−1

t=0

mtd0 *u+s+1,s
(t) =0,

(12)

with 1Bu+s+1BN, u=0, 1, . . . , (N−1).
Now, if the optimization problem of the shape of the thick, lifting delta wing is treated,

Equations (9) and (8a,b) and (12) and (11a,b) are coupled through the parameter n. The hybrid
numerical–analytical method allows, as in [1–6], the numerical decoupling of these equations,
which are strongly non-linear in n. Instead, to solve a non-linear system, a cascade of linear
systems, obtained by giving several discrete values to n (0BnB1), is solved. The lower limit
curve of the inviscid drag (Cd

(i))opt= f(n) is obtained. Each point of this curve is analytically
obtained by solving of a variational problem with given boundary (i.e. given n). The location
of the minimum of this curve is numerically determined and is the optimal value of n (n=nopt).
If nopt is introduced into (9) and (12), the best values of w̃ij and w̃ ij* are obtained respectively.
According to the OO theory, rapid optimization software were developed by the author and
used for the design of the OO Adela (Figure 3), for M�=2, t=0.035, Cl=0.12 at a=0°)
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Figure 4. The optimal hyperbola used to find the optimal dimensionless span lopt, as a function of the cruising
number M�=
1+B2.

and for a systematical analysis of the influence of the initial parameters of the optimization
(M�, Cl and t) over the shape of 100 optimized delta wings. This analysis leads to the
conclusion that the correct choice of the optimal dimensionless span lopt by using the optimal
hyperbola, as in Figure 4, and of the optimal angle of aperture gopt in functions of M� and t,
as in Figure 5(a) and (b), causes an important drag reduction of the delta wing’s shape.

3. EXPERIMENTAL RESULTS ON OPTIMUM–OPTIMORUM DELTA WING
ADELA

In the frame of DFG research contracts of our Lehrgebiet, measurements of pressure, lift,
pitching moment coefficients Cp, Cl and Cm for the range of Mach numbers M�= (1.25�4)

Figure 5. The optimal angle of aperture gopt in functions of M� and t.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 137–148 (1999)
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Figure 6. Various delta and rectangular wing models.

and angles of attack a= (−20°�20°) were performed in the trisonic wind tunnel of
DLR-Köln (with the test section 60×60 cm2) on four delta and two rectangular wing models
(i.e. the wedged, the double wedged and the OO Adela delta wings, the wedged delta wing
fitted with the conical fuselage, the wedged and the cambered rectangular wings) as given in
the Figure 6. This was performed in order to explore the supersonic flow over the FC, to check
the domain of validity for some reinforced (i.e. matched with the boundary layer) potential
solutions of the author for the three-dimensional hyperbolical boundary value problems for u
and u* on the FC in supersonic flow, to check her software for the computation of Cp, Cl and
Cm of the FC, and to determine the optimal cruising Mach number of the OI-STA! In Figure

Figure 7. Comparisons of the theoretically with the experimentally determined aerodynamic characteristics Cl and Cm

of the OO model Adela (Figure 3) versus the Mach number M� for the range of angles of attack a= (0°�10°),
showing good agreement for the range of M�= (1.25�2.2) considered in this study.
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Figure 8. A comparison between the lift coefficients of the OO Adela and of an equivalent double-wedged delta wing
with the same planform, volume and position of the maximal relative thickness as the OO Adela, shows that the Kutta

condition along the leading edges leads to an important gain in lift.

7(a) and (b), the comparison of the theoretically with the experimentally determined aerody-
namic characteristics Cl and Cm of the OO model Adela (Figure 3) versus the Mach number
M� for the range of angles of attack a= (0°�10°), shows good agreement, for the range of
M�= (1.25�2.2) considered here. In Figure 8, a comparison between the lift coefficients of
the OO Adela and of an equivalent double-wedged delta wing (with the same planform,
volume and position of the maximal relative thickness as the OO Adela) shows that the Kutta
condition along the leading edges leads to an important gain in lift. In Figure 9(a)–(c), the
comparison of the theoretically with the experimentally determined Cp values, on the upper
side of Adela, in the transversal section x̃1=0.599 at the angles of attack a= (−8°, 0°, 8°) for
the Mach numbers M�= (1.25, 1.4, 1.8, 2.2) shows good agreement. The experimental results
confirm the theoretical predicted values of Cp, Cl and Cm of the author, for large ranges of
angles of attack and Mach numbers. The theoretical values of Cp for the thin and the thick
symmetrical delta wings, are used as starting solutions and Cl enters in the auxiliary conditions
of the inviscid optimization of the thick, lifting delta wing taken alone.

4. THE ITERATIVE OPTIMUM–OPTIMORUM THEORY AND THE
MULTIDISCIPLINARY VISCOUS DESIGN

An iterative OO theory is proposed here, as in Figure 10, in order to compute the friction drag
and to determine the contribution of the viscosity in the optimal shape of the FC. The inviscid
OO shape of the FC now represents the first step in an iterative shape optimization process.
An intermediate computational checking of the inviscid OO shape is made with a spectral,
zonal potential/three-dimensional boundary layer viscous solver of the author, as in [15–18].
The shear stress and the skin friction drag coefficient tw, Cd

( f) of the FC are determined. The
viscosity coefficient mw depends only on the temperature T.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 137–148 (1999)
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The inviscid OO shape is checked also from the thermal and structural point of view.
Additional auxiliary conditions introduced for thermal, structural or boundary layer reasons
can occur. In the second step of optimization, the predicted inviscid optimized shape of the
configuration is corrected by including these supplementary auxiliary conditions in the
variational problem, and the friction coefficient in the drag functional. The iterative optimiza-
tion process is repeated until the maximal local modification of the shape in two consecutive
optimization steps presents no significant change. The proposed scheme allows the performing

Figure 9. Comparisons of the theoretically with the experimentally determined Cp values, on the upper side of Adela,
in the transversal section x̃1=0.599 at the angles of attack a= (−8°, 0°, 8°) for the Mach numbers M�=

(1.25, 1.4, 1.8, 2.2), showing good agreement.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 137–148 (1999)
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Figure 10. A proposed iterative OO theory.

of the multidisciplinary aerodynamical/structural optimal design. A weak coupling is realized
via auxiliary conditions. Further, the author’s spectral solutions are presented here. Let d0 +
and d0 − denote the dimensionless thicknesses of the boundary layers on the upper and lower
sides of the delta wing respectively. The slopes of the boundary layer thicknesses d0 + and d0 −
in the Ox1-direction are expressed in a form of superposition of homogeneous polynoms, as in
[15–18], i.e.

(d0 +

(x̃1

= %
N

m=1

x̃1
m−1 %

m−1

k=0

d0 m−k−1,k
+ �ỹ �k,

(d0 −

(x̃1

= %
N

m=1

x̃1
m−1 %

m−1

k=0

d0 m−k−1,k
− �ỹ �k. (13a,b)

The modified downwashes w̃1 and w̃1*, due to the solidification of the boundary layer, are
of the following form:

w̃1= %
N

m=1

x̃1
m−1 %

m−1

k=0

w̃m−k−1,k
(1) �ỹ �k, w̃1*= %

N

m=1

x̃1
m−1 %

m−1

k=0

w*m−k−1,k
(1) �ỹ �k. (14a,b)

The modified coefficients in these formulas of w̃1 and w̃1* are

w̃ ij
(1)=w̃ij+

1
2

(d0 ij
+ −d0 ij

−), w̃*ij(1)=w̃ ij*+
1
2

(d0 ij
+ −d0 ij

−). (15a,b)

The modified axial disturbance velocities u1 and u1* at the edge of the boundary layer, in the
second iteration, are obtained by replacing in (3a,b)–(6a,b), the inviscid coefficients w̃ij, w̃ ij*
with the modified ones w̃ ij

(1), w̃*ij(1). Further, the axial, lateral and vertical velocities u, 6 and w
respectively, in the boundary layer are written in spectral forms, i.e.

u=ue %
N

i=1

uih
i, 6=6e %

N

i=1

6ih
i, w=we %

N

i=1

wih
i. (16a–c)

Hereby, ue, 6e and we are the inviscid axial, lateral and vertical velocities at the edge of the
boundary layer and h= [x3−Z(x̃1, x2)]/d(x̃1, x2). The non-slip conditions on the wing’s
surface (i.e. u=6=w=0 for h=0) are automatically satisfied. The matching conditions with
the potential flow, at the edge of the boundary layer (i.e. for h=1) are u=ue, u %=u¦=0; 6=
6e, 6%=6¦=0, w=we and the continuity equation, written in P points Qp (p=1, 2, . . . , P)
lead to the linear relations among the coefficients ui, 6i, wi, i.e.
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%
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i=1

ui=1, %
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i=1

iui=0, %
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i=1
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%
N

i=1

6i=1, %
N

i=1

i6i=0, %
N

i=1

i(i−1)6i=0;

%
N

i=1

wi=1, %
N

i=1

(Dipui+Eip6i+Fipwi)=0. (17a–h)

Here P=3N−3K−7 for the three-dimensional and P=2N−2K−4 for the two-dimen-
sional flow. The continuity, the impulse, the physical gas and the energy equations are used as
in [13,14]. Further, in the boundary layer p=pe(x̃1, x̃2). The physical gas equation and an
exponential law for the dependence of the viscosity m on the absolute temperature T are used
to eliminate T and m from the impulse equations. These equations, written in K chosen points
Qk (k=1, 2, . . . , K) in the boundary layer are:

%
N

i=1

%
N

j=1

ui(Aijk
(1)uj+Bijk

(1)6j+Cijk
(1)wj)=Dk

(1)+ %
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%
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%
N
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%
N

j=1
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(3)6j+Cijk
(3)wj)= %

N

i=1

Cik
(3)wi. (18a–c)

Equations (17a–h) are linear in ui, 6i and wi, and can be explicitly written with respect to
P+7 chosen variables ui, 6i and wi for the three-dimensional (and P+4 variables for the
two-dimensional) flow. These chosen variables are further introduced in (18a–c) and elimi-
nated from these equations. A quadratic algebraic system of M=3K equations, for 3K
remaining variables ui, 6i, wi for the three-dimensional flow (and M=2K equations for 2K
remaining variables ui and wi for the two-dimensional flow), is obtained:

%
M

i=1

aii
(k)Xi

2=Rk. (19)

Here is M=3K for the three-dimensional (M=2K for the two-dimensional) flow and
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Á
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Á
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Á
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Á
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iB iBM
M+1B iB2M
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.

Further, if the notation xi=Xi
2 is made, the solving of the QAS (19) is obtained by the

iterative solving of a cascade of linear algebraic systems. In order to increase the rapidity of
convergence and to obtain all the solutions of the QAS, the software must be written in
complex. The coefficients aii

(k) in the system (19) depend on the positions of the points Pk and
on d. The coefficients Rk, depend additionally, on 7. If d and 7 are initially guessed in the
boundary layer, the 3M coefficients ui, 6i and wi are obtained by solving the system (19) and
the additional 3(N−M) coefficients ui, 6i and wi are obtained for the linear equations (17a–h),
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written in explicit form. The continuity equation and the physical equation of gas are used to
correct 7 and d in the higher-order iteration loops. The shear stress tw at the wall and the
global friction drag coefficient Cd

( f), of the delta wing are

tw=m
(ud

(h

)
h=0

=mu1ue, Cd
( f)=8nfu2

&
O0 A0 1C0

uex̃1 dx̃1 dỹ. (20a,b)

The viscous optimized shape of the delta wing obtained after the performing of the third
iteration of the optimal design presents no significant change, except on its rear part, which is
thicker and more cambered than the inviscid one. The iterative OO theory is able to compute
the total drag Cd

(t)=Cd
( f)+Cd+Cd*, which is 30% greater than the inviscid drag (at M�=2,

a=0°).

5. PROPOSAL OF A FULLY INTEGRATED SUPERSONIC TRANSPORT
AIRCRAFT

The viscous optimal design shows that the contribution of the viscosity in the total drag is
important, but the shape’s modification, due to the viscosity, is reduced. The author makes the
hypothesis that the optimal shape of the FC is that which restores the conditions of the
potential flow around the FC, i.e. the flight of FC is with characteristics instead of shocks and
the leading edge vortices are avoided for a large range of Mach numbers and angles of attack.

The exploration of supersonic flow with six models for the ranges of Mach number
M�= (1.25�4) and angles of attack a= (−20°�20°) leads to the conclusions that there
exists a range of Mach numbers between M�= (1.6�2.8) in which it is possible to fly
economically and ecologically with characteristics instead of shocks, if the aircraft configura-
tion is sufficiently flattened and has a smooth surface!

A fully optimized, total integrated shape of the supersonic transport aircraft (OI-STA)
designed for the cruising Mach number M�=2 is proposed here (Figure 2(b)) and compared
with Concorde (Figure 2(a)). The OI-STA presented here is better integrated and more
flattened because, instead of one great cylindrical fuselage, a total integrated twin configura-
tion (i.e. two smaller cylindrical fuselages integrated inside the structure and joined with a
stiffened structure) is used. This OI-STA presents the following advantages:

– due to the optimization with respect of minimum drag this configuration has a higher
CL/CD;

– due to the Kutta condition along the leading edges, which leads to a suitable coupling of
the camber and twist of the wing in each point, the cornet vortices on leading edges are
cancelled. Therefore, the induced drag and the lateral instability are suppressed and the lift
increases (see Figure 8) for a large range of Mach numbers and angles of attack;

– due to the integration, the OI-STA can be considered as one lifting wing and the shocks,
the detachments and the vortices along the junction lines between the wing and the fuselage
of the classical aircraft (with one cylindrical, non-integrated fuselage) are suppressed. It
results in a reduced drag, and therefore, less fuel consumption and greater operating range;

– the multipoint optimal design is realized by using movable leading edges flaps that are
optimized at a second lower Mach number M�* . Additionally, for the start and landing
blended trailing edge flaps, with the same outer shape as the shape of OI-STA (in the
neighborhood of the trailing edges) are used, in order to avoid the increasing of drag at
cruise;
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– the multidisciplinary scheme proposed in Figure 10 allows an interactive structure and
flight control of the optimal aerodynamic shape, via auxiliary conditions, which is possible
in all the iteration loops of the iterative optimum–optimorum theory.
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